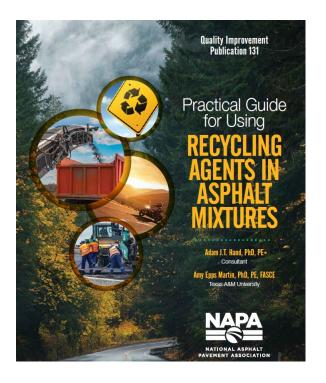


10:11

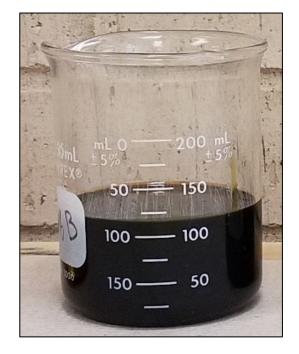
Recycling Agents – What to Know

Adam Hand, PE, PhD University of Nevada

ASPHALT KEEPS MICHIGAN MOVING!


ACKNOWLEDGEMENTS

- NAPA: QIP-131 Development
 - Brett Williams & Richard Willis
- NAPA Members
 - Panel & Examples
- Amy Epps Martin
 Co-Author


OUTLINE

- Introduction
- Recycling Agents (RA)
- Mix Design Using Recycling Agents with Examples
- Practical Consideration when Producing & Placing Mixtures with RAs

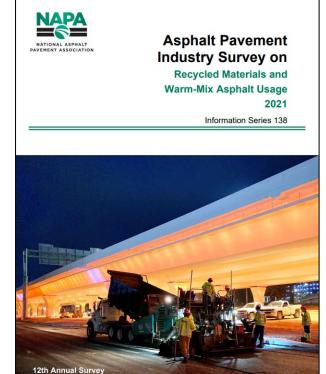
APAM

- Summary
- Q&A

OBJECTIVE

- Background "What and Why"
- Provide Tiered Mix Design Approaches to Facilitate Use of RAs in Asphalt Mix to Produce Good Performing Pavements – the "How"
- Focus on:
 - Tier Mix Design Approach Consistent with BMD using Examples
 - Practical Production Considerations

APAM

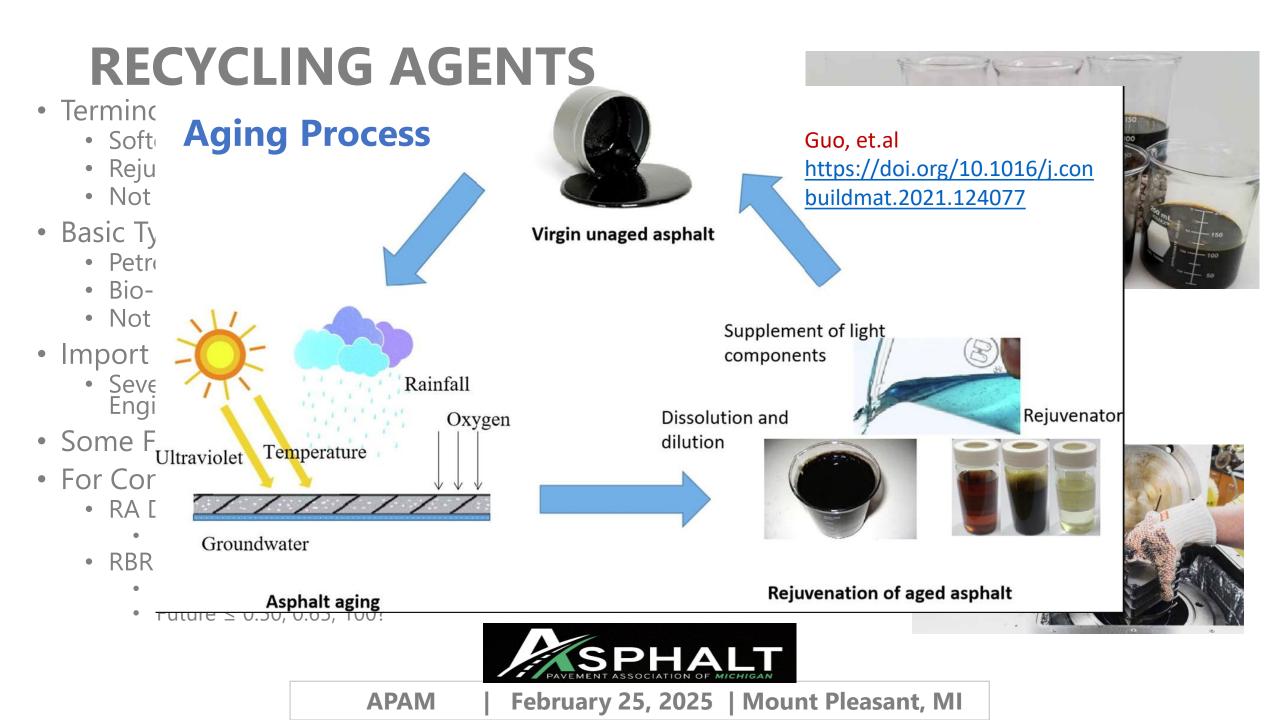

• Have Q&A

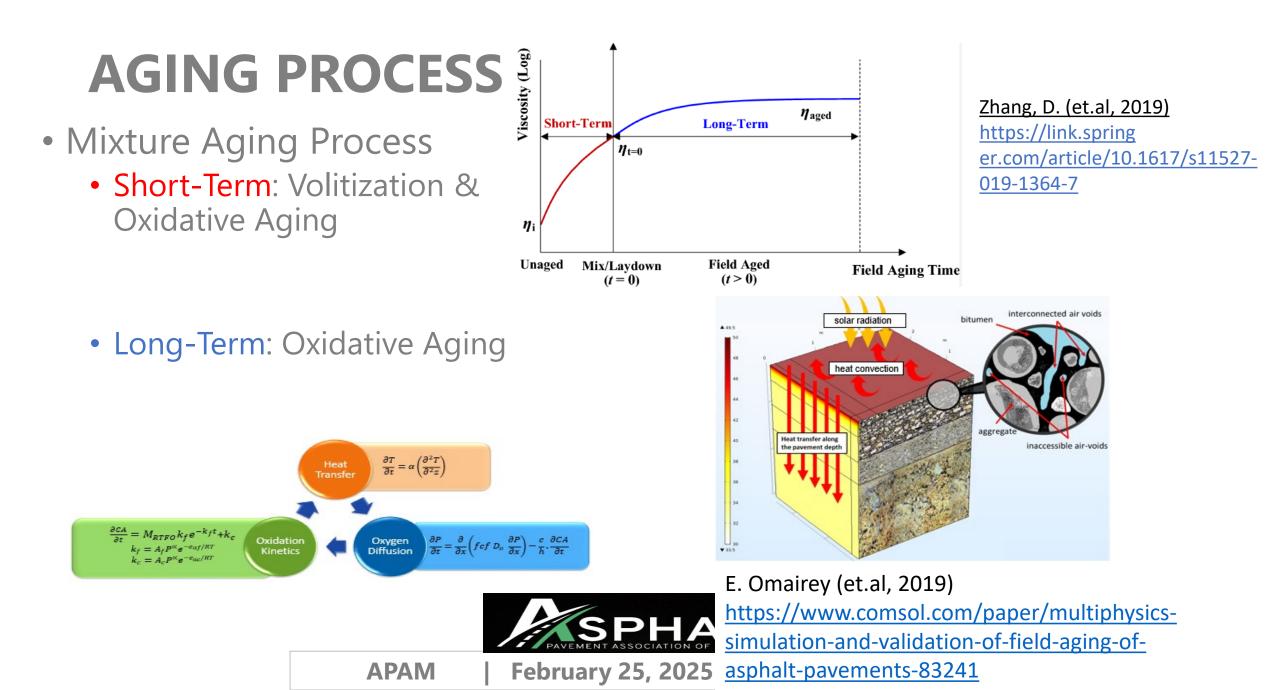
INTRODUCTION/BACKGROUND

- Asphalt Industry is Sustainability Leader
 - \$3.78 Virgin Binder and Aggregate Savings
- Recycling & RA Focus
 - 1970's & 1980's Oil Embargoes: RAs Introduced
 - Late 2000's Binder Cost Increase: RAM use Increased
 - Early 2010's High RAM Durability Challenges & Solutions
 - Adequate and Softer PG Virgin Binders
 - Recycling Agents
- Primary RA Uses
 - Meet BMD Durability Requirements at Current RAM Level
 - Increase RAM Level, Other Benefits
- Economics of Increasing RAM Very Market Dependent
 - Urban vs. Rural, Specifications, S&D Commodity Prices, ...
 - Every Situation is Unique

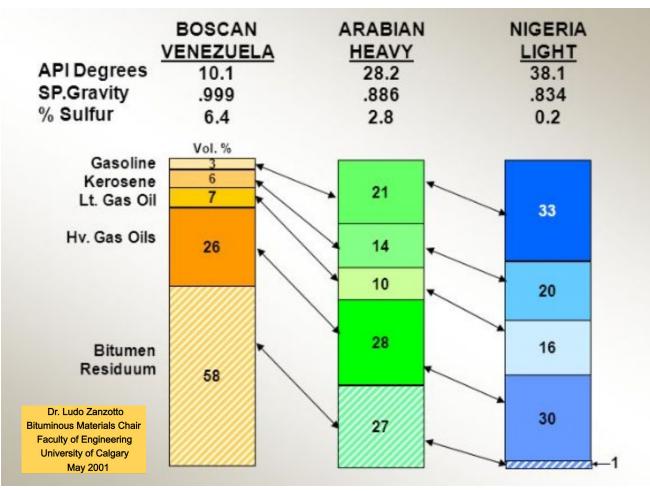
APAM

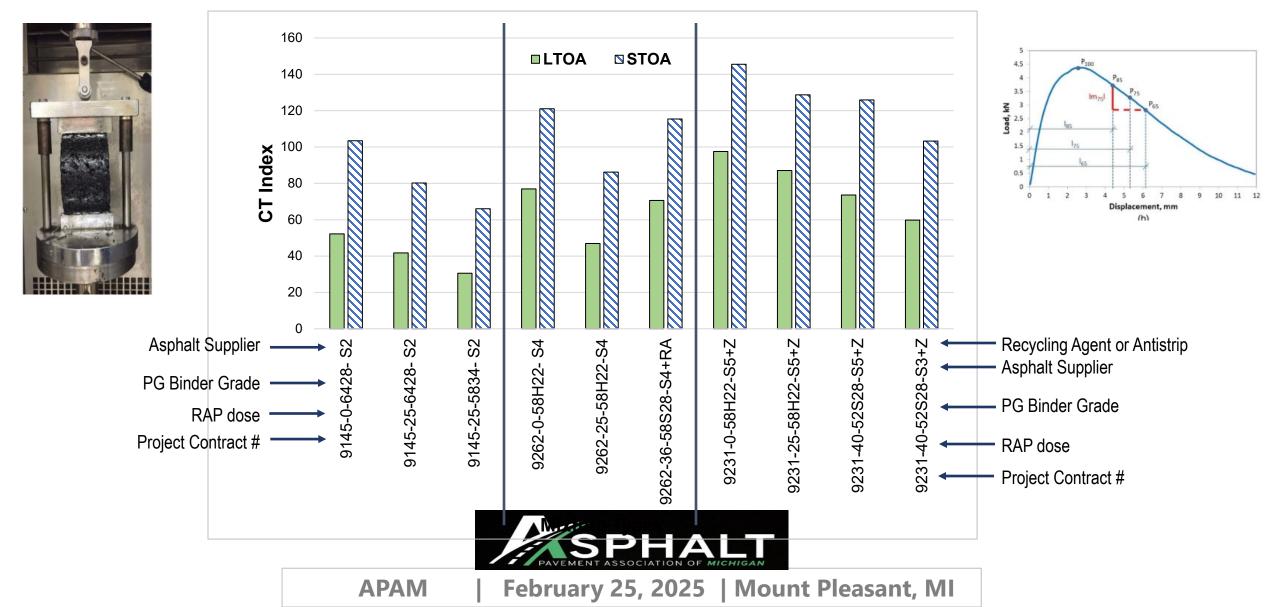
RECYCLED MATERIALS – RAP, RAS, GTR, PLASTICS, CARBON BLACK, ...


• RAP



• RAS




CRUDE OIL SOURCE MATTERS

- Bitumen Yields Vary
 - Chemical Compositions Vary
- Asphalt Binders w/in PG Vary
 - Base Asphalt Source/Chemistry
 - Blending Stocks
- Binders Vary....
- Binder Rheological <u>Behavior</u> Varies & Changes with Aging

SAME SOURCE – GRADE BUMPING DOWN & RECYCLING AGENTS

CLASSIFICATION OF RECYCLING AGENTS

100[™] Annual Meeting A Virtual Event January 2021

Lectern Session 1130

1130 - Recycling Agent Classification and Categorization

Texas A&M's new recycling agent classification system Amy Epps Martin, Texas A&M University, College Station

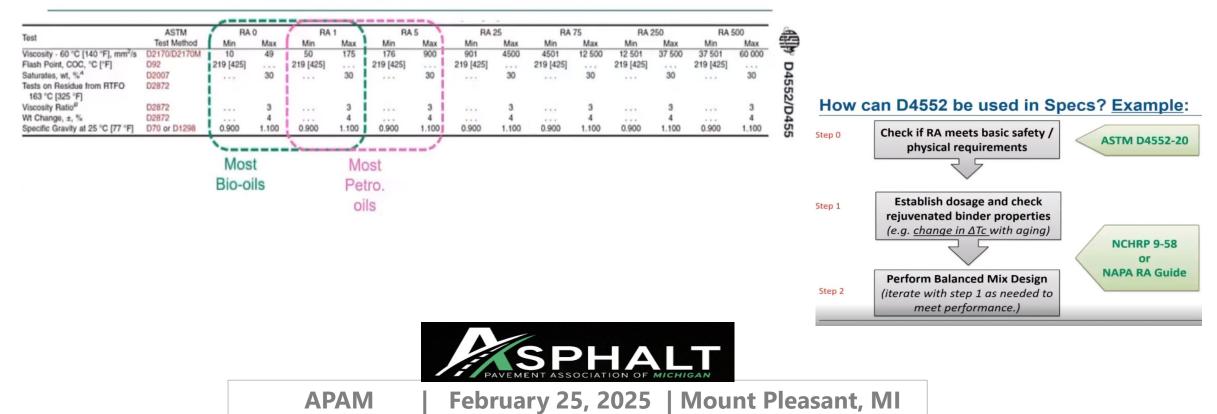
ASTM D4552 classification system

Sebastian Puchalski, Kraton Polymers Hassan Tabatabaee, Cargill, Inc.

NCAT classification study for bio-based rejuvenators

Raquel Moraes Puchalski, National Center for Asphalt Technology (NCAT)

Nebraska's classification study based on raw materials source Hamzeh Haghshenas, University of Nebraska, Lincoln


- Asphaltenes
- Saturates
- Aromatics
- Resins

APAM

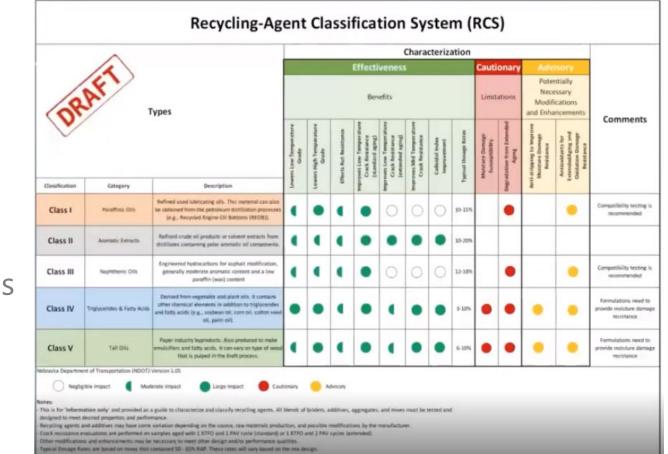
CLASSIFICATION OF RECYCLING AGENTS

- ASTM D4552 (2019/2020)
- Bio-oils integrated

TABLE 1 Physical Properties of Hot-Mix Recycling Agents

CLASSIFICATION OF RECYCLING AGENTS

- TTI 2 New Classification Parameters
 - Binder Embrittlement Parameter (BEP) = identifies oxidation and rheological stiffening of RA
 - Rejuvenation Index (RI) = identifies aging resistance and inhomogeneity of RA
- TTI 3 New RA Classifications
 - P (paraffinic oil) = only SOFTENER with poor compatibility and aging sensitivity (no Polar compounds)
 - A (aromatic extract-petroleum based) = sufficient REPLENISHER for some binder blends at high doses (polar aromatics)
 - V&B (vegetable & bio oils) = EMULSIFIER to compatabilize, oxidize but less rheological effect
 - T (tall oils) = EMULSIFIER that is more sensitive to aging/more volatile



CLASSIFICATION OF RECYCLING AGENTS

- Nebraska DOT
 - UNL Research
- 5 Classes
 - Class I: Paraffinic Oils
 - Class II: Aromatic Extracts
 - Class III: Napthenic Oils
 - Class IV: Triglycerides & Fatty Acids

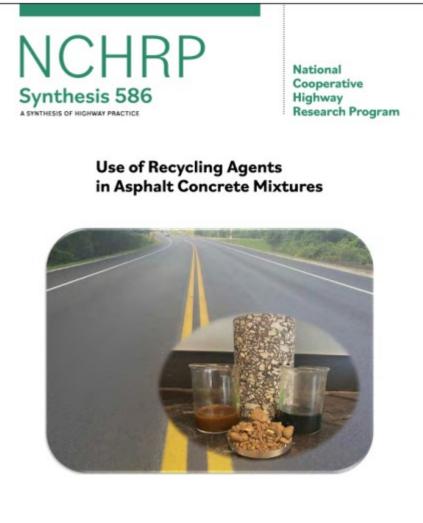
APAM

• Class V: Tall Oils

RECYCLING AGENTS

- Many Available
- Different Compositions
- Different Impacts
- Different Aging

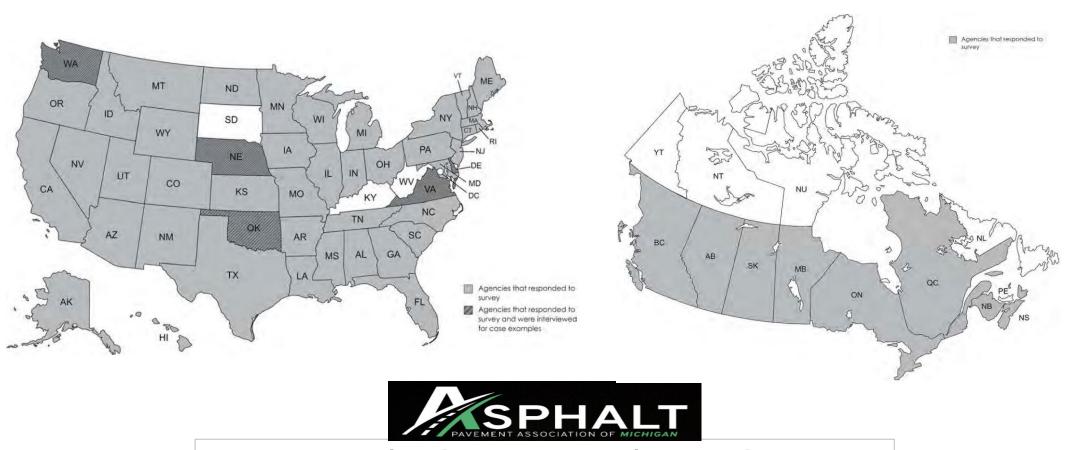
. . .

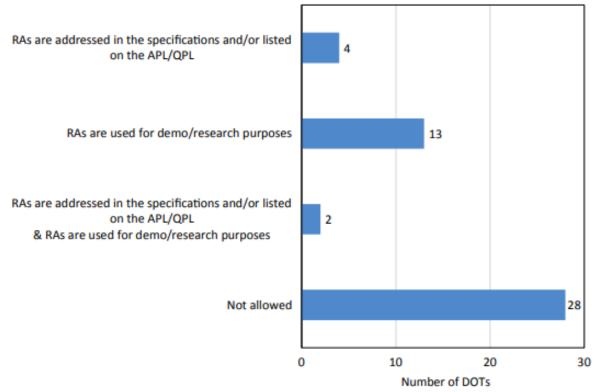


APAM

NCHRP SYNTHESIS 586

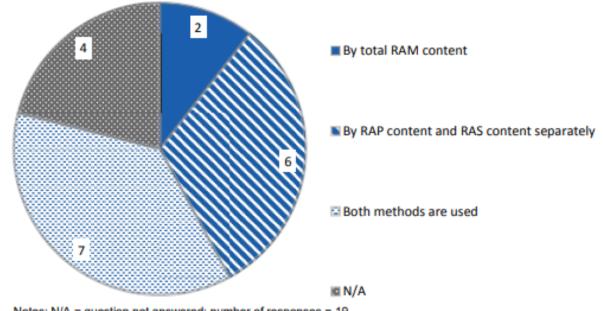
- Use of Recycling Agents in Asphalt Concrete Mixtures
- Objective of this synthesis is to document current state DOT practices and procedures related to the use of RAs in asphalt mixtures containing RAM.


The National Academics of SCIENCES • ENGINEERING • MEDICINE [TETEES] TRANSPORTATION RESEARCH ROARD


NCHRP SYNTHESIS 586 - RESPONDENTS

USA

Canada



NCHRP SYNTHESIS 586

Note: Number of responses = 47.

Figure 5. Distribution of responding state DOTs with respect to usage of RAs in asphalt mixtures.

Notes: N/A = question not answered; number of responses = 19.

Figure 7. Distribution of responding state DOTs that allow use of RAs on specification of RAM content in asphalt mixtures.

RECYCLING AGENT ECONOMICS

- Know Your Costs
 - Materials
 - Production
- Evaluate Performance with RA's
 STOA & LTOA
- Evaluate the Economics of RA's
- What are differences?
 - Introduced at the Terminal vs. Plant
 - Higher RAP percentages (moisture mgmt.)
 - •

Cost Savings Calculator

Adjust the target RAP percentage and raw material prices you would like to explore for your rejuvenated mix and see how it compares to a typical mix of 20% RAP and 5% Target AC.

RAP with Rejuvenator	30% 🗸
Virgin AC Cost/Ton	\$ 400
Virgin AGG Cost/Ton	\$ 15
RAP Cost/Ton	\$ 5
Typical 20% RAP Mix Cost	
Approximate Cost/Ton (without	
Rejuvenator)	\$28.00
Higher RAP Mix	
Approximate Cost/Ton (with Anova®	
Rejuvenator)	\$27.00
Approximate Savings/Ton	\$1.00

https://www.cargill.com/bioindustrial /anova/asphalt-rejuvenators

ing Agents

TIERED MIX DESIG APPROACHES

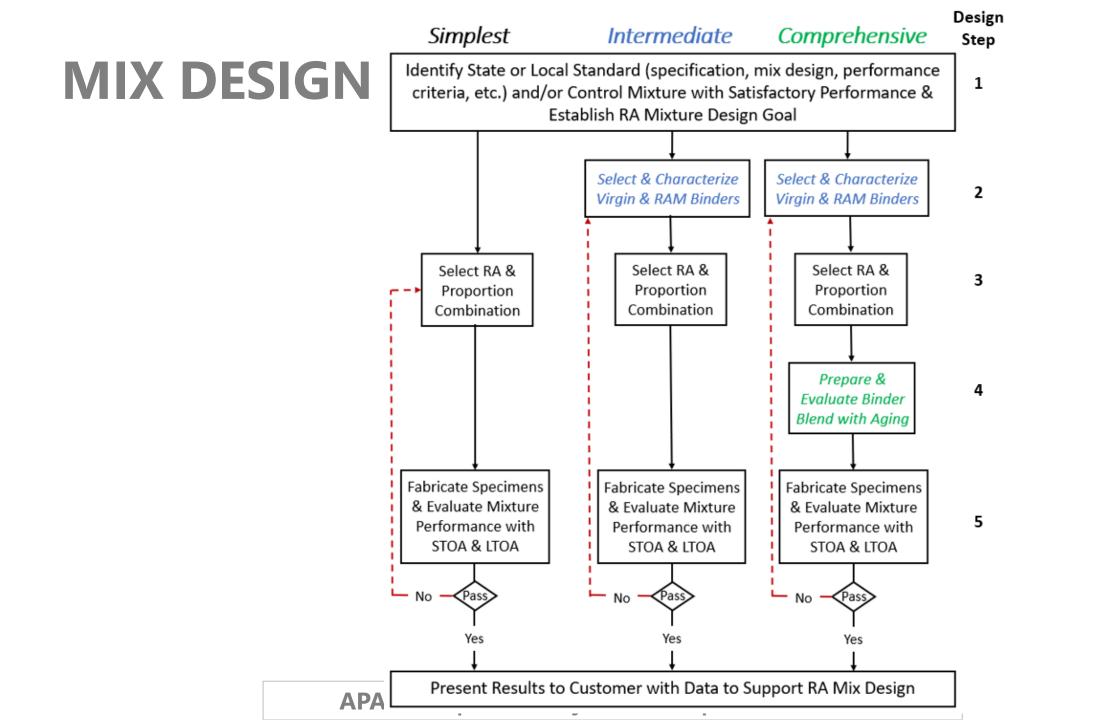
Approach

	Field Performan Risk
Simplest	Mod
Intermediate	Mod
Comprehensive	Low

ormanc

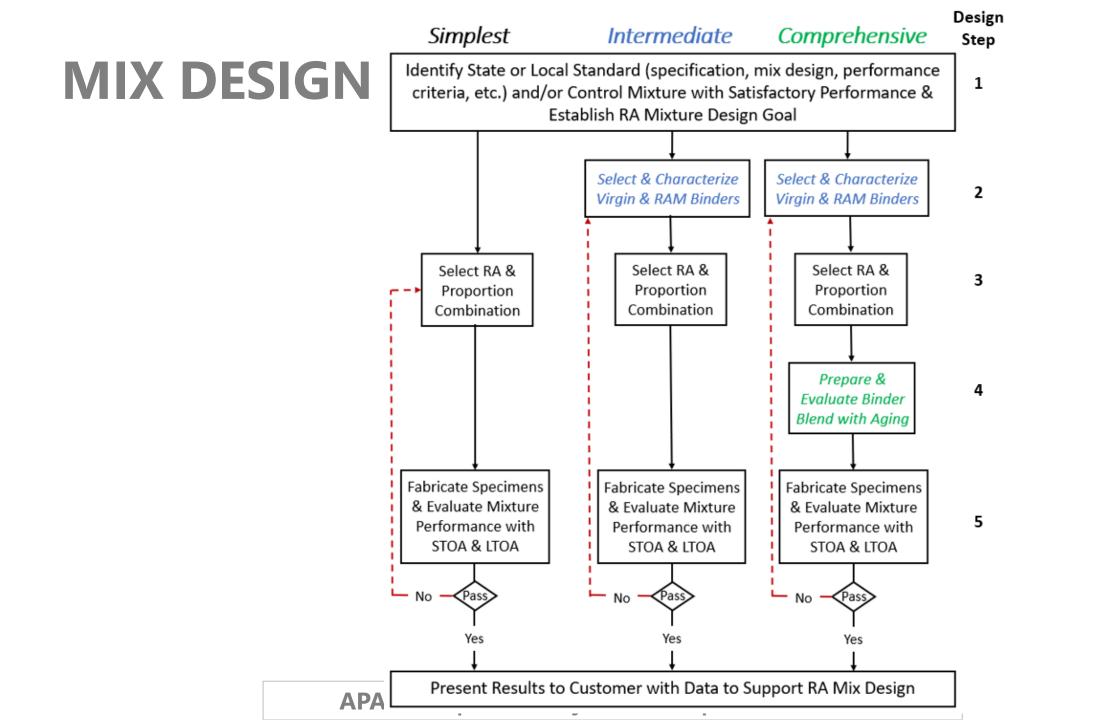
ALANCED MIX DESIGN RESOURCE GUIDE

Fan Yin, Ph.D., P.E. Randy West, Ph.D., P.E. National Center for Asphalt Technology


NATIONAL ASPHALT PAVEMENT ASSOCIATION

ed Testing nder Mixture

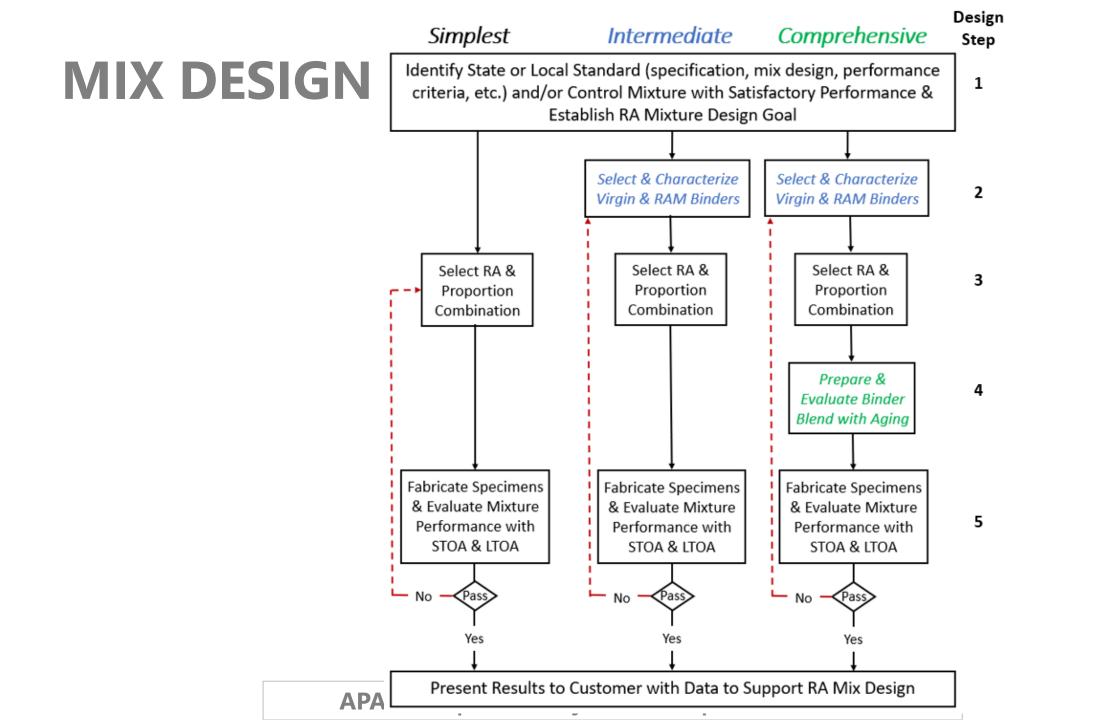
nder end	Mixture Rutting	Mixture Cracking
)	Yes	Yes
)	Yes	Yes
S	Yes	Yes


. . .

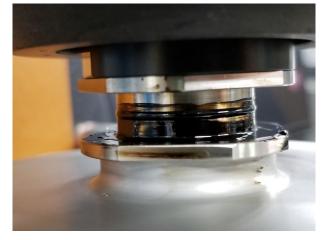
- 1. Identify State or Local Standards and/or Satisfactory Control Mixture & Establish RA Mixture Design Goal
 - Satisfy BMD rutting & cracking performance requirements
 - Increase RAM

2. Select & Characterize Virgin and Recycled Binders

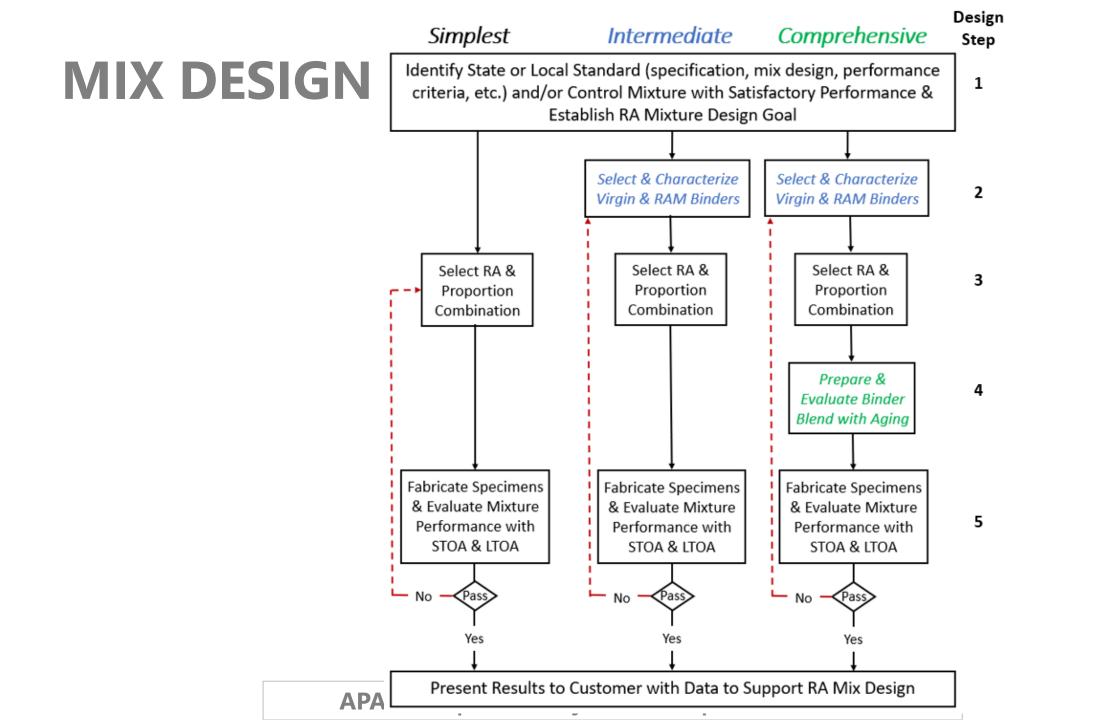
Parameter	Test Method	Temperature	Aging Condition(s)
PGH	AASHTO T 315	High	Unaged RTFO AASHTO T 240
ΔT _c	AASHTO T 313	Low	PAV (20hr) AASHTO R 28



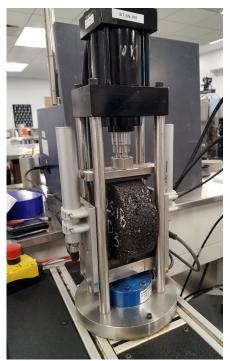
3. Select Recycling Agent & Proportion Materials Combination Including Appropriate Dose



4. Prepare & Evaluate Binder Blend with Aging


Parameter	Test Method	Temperature	Aging Condition(s)
PGH	AASHTO T 315	High	Unaged RTFO AASHTO T 240
G-R	AASHTO T 315	Intermediate	RTFO AASHTO T 240 PAV (20-hour, 40-hour) AASHTO R 28
ΔT _c	AASHTO T 313	Low	PAV (20-hour) AASHTO R 28
			SDHAIT

APAM | February 25, 2025 | Mount Pleasant, MI


NT ASSOCIATION OF


5. Prepare Specimens & Evaluate Mixture Performance with Aging – *Example: What is Your Agency Using?*

Parameter	Test Method	Temperature	Aging Condition(s)
N _{12.5}	HWTT AASHTO T 324	High (50°C)	STOA AASHTO R 30
CT _{Index}	IDEAL-CT ASTM D8225	Intermediate (25°C)	LTOA AASHTO R 30
FI	I-FIT AASHTO TP 124	Intermediate (25°C)	LTOA AASHTO R 30
CRI _{Env}	UTSST ASTM WK60626	Low (10°C/hour from 20°C)	LTOA AASHTO R 30

5. Prepare Specimens & Evaluate Mixture Performance with Aging - *Example: What is Your Agency Using?*

Parameter	Test Method	Temperature	Aging Condition(s)
N _{12.5}	HWTT AASHTO T 324	High (50°C)	STOA AASHTO R 30
CT _{Index}	IDEAL-CT ASTM D8225	Intermediate (25°C)	LTOA AASHTO R 30
FI	I-FIT AASHTO TP 124	Intermediate (25°C)	LTOA AASHTO R 30
CRI _{Env}	UTSST ASTM WK60626	Low (10°C/hour from 20°C)	LTOA AASHTO R 30

MIX DESIGN • Volumetrics

- Consider effects of absorbed binder
 - VMA = AV + $V_{be} = f(G_{sb})$
 - $DP = p_{200} / P_{be}$
- Reduce recycled binder availability
- Increase effective binder
 - Increase OBC, VMA
 - Add RA
 - Specify min OBC
 - Decrease design AV
 - Reduce N

- Strategies for BMD
 - Increase RA dose or Change type
 - Select softer virgin binder or one with lower $\Delta {\rm T_c}$
 - Adjust aggregate blend
 - Modify split between RAP_{BR} and RAS_{BR} or reduce RAS_{BR}
 - Reduce overall RBR

MIX DESIGN EXAMPLE – SIMPLEST APPROACH

		Control				
		Mixture	RAM Mixture			
Mixtu	re Properties	0.0 RBR	0.33 RBR	Evalua	ation Criteria	
Proportioni	ng & Materials Sele	ection				
NMAS		1⁄2"	1/2"		1/2"	
Virgin Binde	er PG	PG 64-28 PM	PG 64-28 PM	PG	64-28 PM	
OBC (%)		5.5	5.6	Not	: specified	
RAP Conter	nt (%)	0	40	Not	specified	
RAS Conten	ıt (%)	0	0	Not	Not specified	
RBR		0	0.33	Not	specified	
Recycling A	gent Type	n/a	Bio-based	Not	specified	
Recycling A	gent Dose (% by	0.0	4.0	Not	specified	
wt total bin	der)					
Mixture						
HWTT RD (r	NTT RD (mm) @ 50°C 3.9 $3.5 \le 12.5$ mm @ 2		@ 20,000 cycles			
IDEAL-CT CT _{Index} @ 25°C		85	90	≥Con	trol Mixture	
		PAVEMENT ASSOCIATION	OF MICHIGAN			
	APAM	February 25, 202	25 Mount Plea	asant, MI		

MIX DESIGN EXAMPLE – INTERMEDIATE/COMPREHENSIVE

APPROACHES

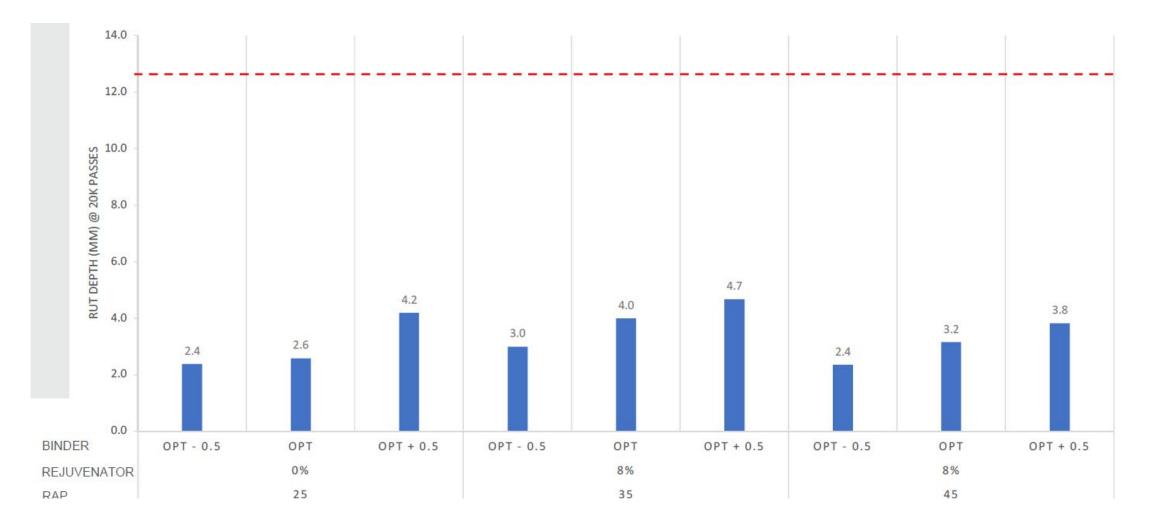
		,				PESIGN GODE
		DOT		Recycled		Regrander for All of E
	Virgin	Control	Recycled	w/Softer Binder	Rejuvenated	5 15 10
Mixture Properties	0.0 RBR	0.22 RBR	0.31 RBR	0.31 RBR	0.31 RBR	Evaluation Criteria
Proportioning & Mat	terials Selectio	on			-	
NMAS	1⁄2"	1/2"	1/2"	1⁄2"	1/2"	Not specified
Virgin Binder PG	PG 58-28	PG 58-28	PG 58-28	PG 52-34	PG 58-28	PG 58-28 for climate
						& traffic
OBC (%)	5.6	5.6	5.4	5.4	5.4	Not specified
RAP Content (%)	0	27	36	36	36	Not specified
RAS Content (%)	0	0	0	0	0	Not specified
RBR	0	0.22	0.31	0.31	0.31	Not specified
Recycling Agent	n/a	n/a	n/a	n/a	Bio-based	Not specified
Туре						
Recycling Agent	0.0	0.0	0.0	0.0	5.5	Not specified
Dose						
(% by wt total						
binder)						
/	APA		ebruary 25,		easant, ivii	1

MIX DESIGN EXAMPLE - INTERMEDIATE/COMPREHENSIVE

APPROACHES

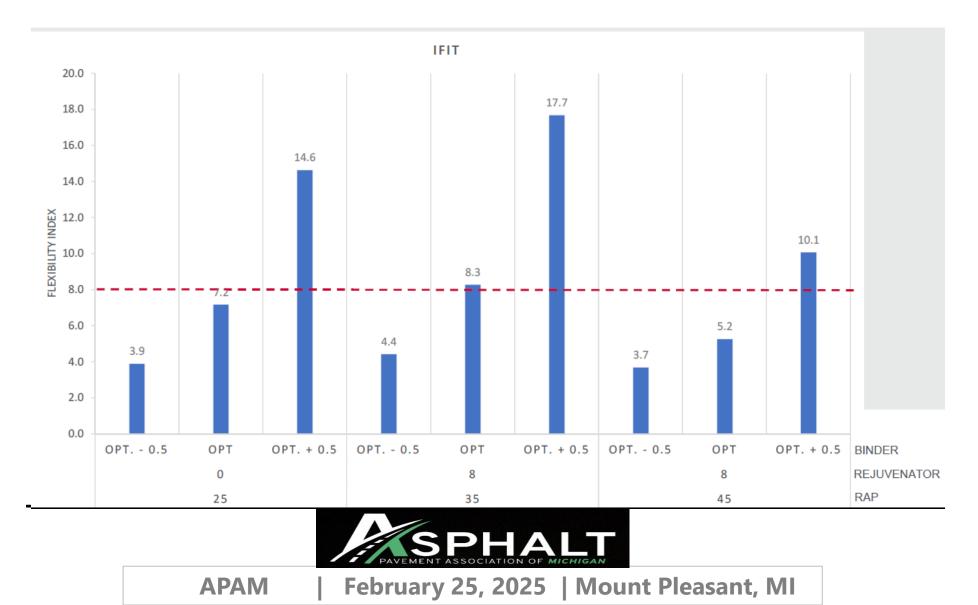
		DOT		Recycled w/Softer		
	Virgin	Control	Recycled	Binder	Rejuvenated	
Mixture Properties	0.0 RBR	0.22 RBR	0.31 RBR	0.31 RBR	0.31 RBR	Evaluation Criteria
Component Materials						
Virgin Binder PGH (°C)	59.4	59.4	59.4	52.3	59.4	Not specified
Virgin Binder ΔT_c (°C)	-3.4	-3.4	-3.4	+0.4	-3.4	<u>></u> -3.5°C
RAP Binder PG	n/a	PG 82-10	PG 82-10	PG 82-10	PG 82-10	Not specified
RAP Binder PGH (°C)	n/a	83.5	83.5	83.5	83.5	Not specified
RAP Binder ΔT_{c} (°C)	n/a	-7.3	-7.3	-7.3	-7.3	<u>></u> -7.5°C
Binder Blend						
Binder Blend Continuous PG	n/a	PG 65-25	PG 68-23	PG 62-26	PG 59-33	PG 58-28
Binder Blend ΔT_c (°C)	n/a	-4.3	-5.3	-2.9	-3.1	<u>></u> -5.0°C
Mixture						
HWTT N _{12.5} @ 50°C	NA	NA	NA	NA	6750	<u>></u> 5,000
I-FIT FI @ 25°C	12	14	10	17	16	<u>></u> 7
UTSST CRI _{Env}	NA	23	8	22	57	<u>></u> 17
	APAM	February	y 25, 2025	Mount Plea	sant, MI	

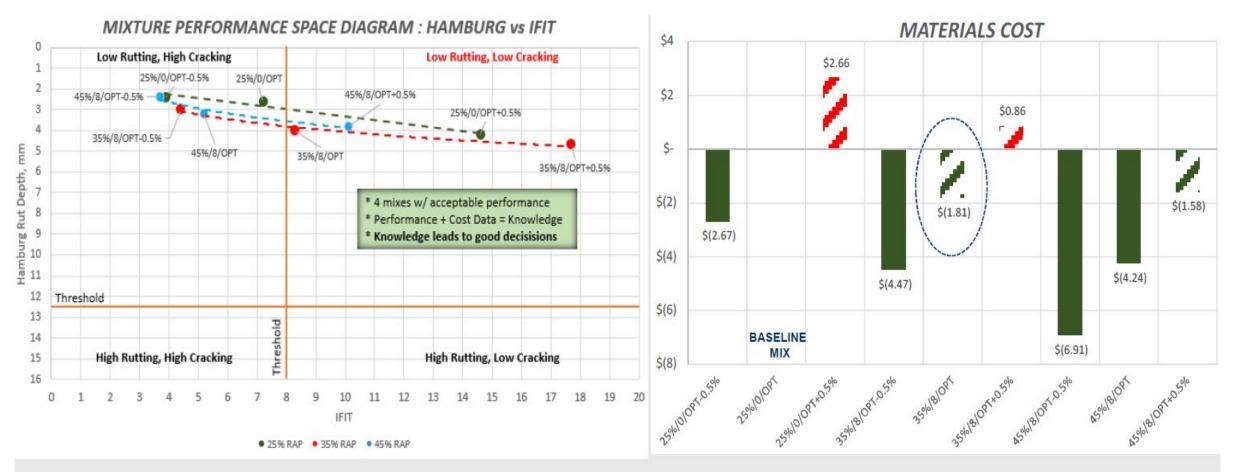
SIMPLE EXAMPLE 2


- Staker Parsons SLC
- Control: Typical 1/2" Superpave Mix w/ 25% RAP
- RAP
 - 35%, 45%
- %AC
 - Optimum $\pm 0.5\%$
- Rejuvenator Dose
 - 0%, 8%
- Aging
 - R30 STOA, & CDD method
- Performance Tests
 - HWT, Ideal-CT, IFIT

CRH - RMACE S. Buchanan

https://rmaces.org/docs/Balanced_Mix_Designs.pdf


HAMBURG WHEEL TRACK TESTS


CRH - RMACE S. Buchanan https://rmaces.org/docs/Balanced_Mix_Designs.pdf

IDEAL CT & IFIT

EXAMPLE

OPTIMIZATION EXAMPLE

PRODUCTION CONSIDERATIONS

- Mix Design
- Plant Production
- Paving Operations

• EH&S

APAM

PRODUCTION CONSIDERATIONS – MIX DESIGN

- Mix Design Goal: Use RAs to Optimize High RBR Mixes, Satisfy BMD Requirements, Improve Economics, & Minimize Environmental Impacts: *May Require Some Changes – Context Sensitive!*
 - Increased Number of Mix Designs?
 - More Rigorous Virgin Binder, RA, &/or Blended Binder Analysis?
 - Virgin Binder Mentality Change: Commodity vs. Performance?
 - Mix Aging Protocols/Time/Space?
 - Rutting and Cracking Performance Test Equipment?
 - Mix Designer Skillset and Training?
 - Laboratory Space?
 - Relationships with Service Providers?

APAM

• Support of RA Suppliers?

PRODUCTION CONSIDERATIONS – MIX DESIGN

- Mix Design Equipment Costs
 - PG Binder Grading \approx \$150k
 - Hamburg Wheel Track Tester \approx \$50k
 - Cracking Tests \approx \$15 to \$50⁺k
 - Additional Preparation and Aging Equipment:
 - Ovens, Sawing, Coring, Notching Equipment/Jigs
- Other Considerations:
 - Laboratory Space for Above
 - Highly Skilled Technicians to Prepare and Perform Tests
 - Relationships with Suppliers vs. Investments?
 - When to Make Investments?
 - Understand Current Mixes under New Specs vs. Pilots vs. Full Implementation

STATES ARE RESEARCHING, PLANNING OR IMPLEMENTING BMD

- Long DOT History with Volumetrics in Mix Design & Acceptance
 - Relax or Eliminate with Performance Test Confidence Over Time
- For Improved Durability Through the Transition Consider
 - Getting Adequate Binder in Mixes
 - VMA based on virgin and RAM Gsb, not RAM Gse
 - Dust Proportion Must Manage Fines
- If Challenged Meeting BMD Requirements Consider:
 - Increasing RA Dose or Different RA
 - Different Virgin Binder Supply or Softer PG
 - Adjusting Blend to Increase Binder Content
 - Modifying RAP, RAS, or RAP/RAS Split
 - Reducing RBR

- Additional Binder and/or Blending Tanks?
- RA can be Dosed at Plant or Terminal/Refinery
 - DOT/Agency Allow One or Both?
 - Flexibility to Adjust to RAM Level if at the Plant
 - DOT May Force Producer to COC Program

- If Blended at Plant "On the Fly" then Interlocked Controls, Calibration, ...
 - Eliminates Need for Additional Asphalt Tanks
 - Small Doses: Right Sized Equipment Pump, Meter, Blending Units Important
 - Temperature Compensation for Viscosity in Cool Climates
 - Pre-Heats Needed?
 - Adequate Blending Prior to Introduction into Drum Necessary
 - AASHTO M156 if Agencies Don't Have 109 Procedure

- Consistent RAP and RAS Production, Handling and Management
 - NAPA QIP-129 Best Practice on RAM Production for Consistency
 - In-Bound Sorting, Crushing, Fractionation
 - Stockpiling BPs
 - Moisture Management, Paving Under, Covering
 - Depends on Geographical Location
 - BPs Vary with Precipitation Levels
 - Feeding Best Practices
 - RAM vs. Virgin Aggregate Bins

APAM

- Consistent RAP and RAS Production, Handling and Management (Cont.)
 - NAPA QIP-129 Best Practice on RAM Production for Consistency
 - Appropriate Feed Bins with Scalping Screens, Air Cannons, Vibrators, Scalping to Re-Circ Crusher & Screen
 - Multiple Bins for High RAM
 - Weigh Bridges Guarded from Elements
 - RAS Feed Low Very Percentages/Mass
 - Specialty/Modified Feed Bins
 - Weigh Bridge Sensitivity

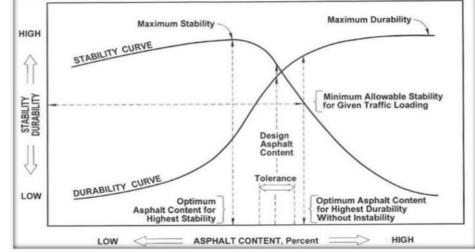
- Consistent RAP and RAS Production, Handling and Management
 - NAPA QIP-129 Best Practice on RAM Production for Consistency
- Flighting & tuning Modifications?
- High RBR Mixes:
 - RAM % = f(plant type)
 - Counterflow Drums
 - Drum in Drum
 - Longer Drums
 - Fines Management
 - External Mixing Chambers

- See NAPA SR-213
- Fines Management
 - Washing Aggregates
 - Especially Crusher Fines
- Primary Collector Role
- Baghouse
 - Collected Fines
 - Metered Return
 - Ability to Waste
 - DP Specifications
 - Environmental Management

- Fewer Impacts
- Workability and Density Most Important

APAM

- Can Be Improved with RA?
- Right Resources for the Job
- Cool Weather Paving
- WMA for Environment, Compaction, Moisture Sensitivity?
- Workability, Hand Work, Segregation & Joints Same Game


QUALITY CONTROL

- BMD with Production Performance Testing
 - Additional QC
 - Binder Yes
 - RA Yes
 - Aggregates Same
 - RAM Yes if Significant Dose Increases

APAM

- Mat and Joint Density Control Yes
- Meeting Volumetric and Performance Test Yes: VMA control & Cracking test control
- Additional Resources Initially?
- Production, Con Ops and QC Relationship & Communications Important

PRODUCTION CONSIDERATIONS - EH&S

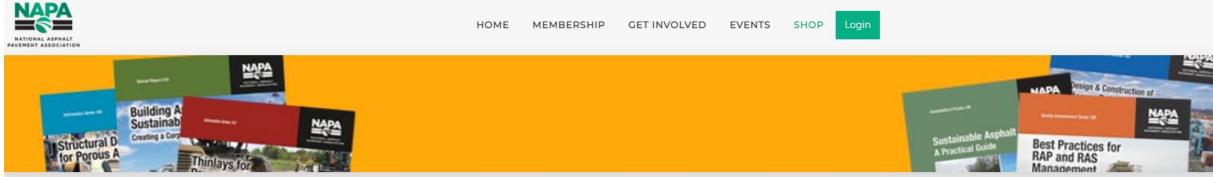
- As with Any Raw Material Review RA SDS
 - Equipment pH
- Bio-Based May Pose Lower Risks than **Conventional RAs**
- EH&S Experts Interviewed Unaware of Any Risks
- Some Comments About Aromas Worth Noting
- Human Detection Level Below Hazardous Level
 - Be a Good Industry Representation and Neighbor
 - Understand and Pro-Actively Communicate

APAM

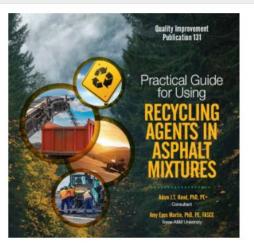
	~	•
Nata	NIINN	lior
Jaie	Supp	
Udid		

Product name	: Asphalt Cement		
Synonyms	PG 52-28, PG 58-22, PG 64-22, PG 67-22, AC-5, AC-10, AC-20, AC-30, 150 Pen, Hard Pen asphalt		
Relevant identified uses of	f the substance or mixture and uses advised against		
Product use	: Road paving		
Manufacturer	: Blacklidge Emulsions, Inc. 12251 Bernard Parkway, Suite 200 Gulfport, MS 39503 (228) 863-3878		
Emergency telephone number	: CHEMTREC - (800) 424-9300		
Section 2. Haza	rds Identification		
OSHA/HCS Status	: This chemical is considered hazardous according to the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)		
Classification	: Acute toxicity – Inhalation (Dusts/Mists)	Category 4	
	Skin corrosion/Irritation	Category 2	
	Serious eye damage/Eye irritation	Category 2A	
	Carcinogenicity	Category 2	
	Specific target organ toxicity (repeated exposure)	Category 2	
GHS Label Elements			
Hazard pictograms	· 🚯 🕚		
Signal Word	: Warning		
Hazard Statements	: May be severely irritating to the skin and eyes.		
	May be irritating to the respiratory tract.		
	May be harmful if swallowed or absorbed through the skin.		
	Fumes from heated material may be irritating and hazardous.		
	May cause allergic skin reaction.		
	Overexposure may cause CNS Depression.		
	Aspiration hazard if swallowed – can enter lungs and cause damage.		
	Potential reproductive hazard.		
		information.	
Hazards Not Otherwise	Potential reproductive hazard. Contains material which can cause cancer.	information.	

Date of Issue: October 1, 201


SUMMARY

- RAs can be Used to Produce High RAM Mixes with Good Performance
- Key Considerations Include: Material Selection, Mix Design, Plant Production, Paving Operations, Related Investments, and EH&S
- Producers Need to Balance Rigor/Risk and Cost/Time & Equipment Needs
- Every Contractor's Situation is Unique
- Every Materials Combination is Unique
 - Virgin Binder Quality & Consistency is Critical
 - Not all Recycling Agents are Equal
- Long-term Aged Mixture Cracking Testing is Important
- Don't Lose Sight of Sustainable Benefits for Our Industry
 - They are Significant and Important
 - They Create Value for Businesses, Individuals and the Communities We Live In!
- Promote Responsible High RAM Use and Support Use with Data
- Don't Forget Quantifying Doses and EH&S Considerations
- Demonstrate BPs for Industry and Recycling!



HOW TO GET THE PRACTICAL GUIDE

< Back

Practical Guide for Using Recycling Agents in Asphalt Mixtures

NAPA Store Adam J.T. Hand, Ph.D., P.E.; Amy Epps Martin, PhD, PE, FASCE

Government/Academia: \$0.00 Member: \$0.00 Non-Member: \$50.00 **« Your price**

Published: 9/15/2020

Pages: 32

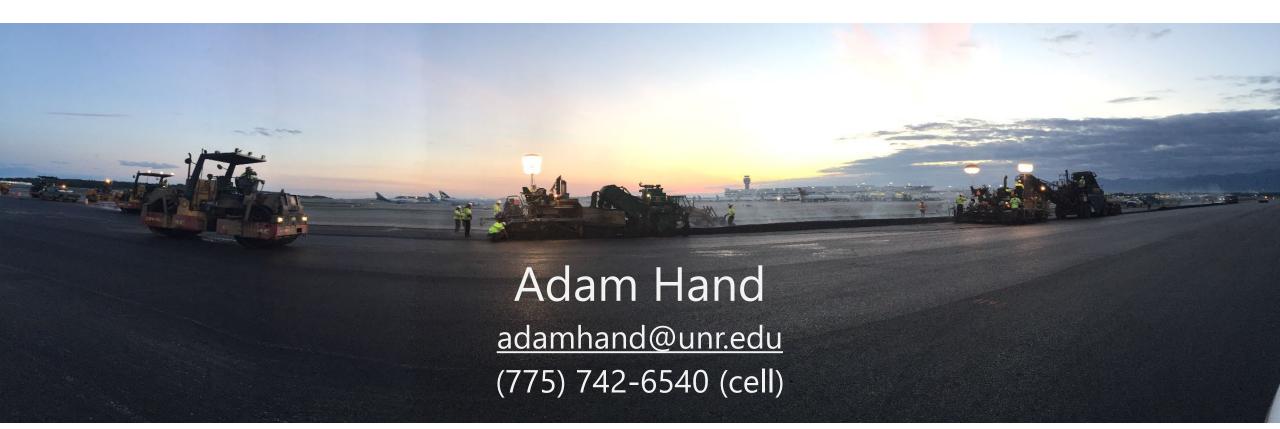
This guide provides a tiered set of step-by-step approaches to facilitate the use of recycling agents in asphalt mixtures to produce pavements with good performance and promote sustainability.

Add to Cart

<u>https://member.asphaltpavement.org/Shop/Product-Catalog/Product-Details?productid={C4B79F72-93F7-EA11-A815-000D3A4DF1CD}</u>

OTHER NAPA RESOURCES

APAM



- NAPA IS-143 Balanced Mix Design Resource Guide
- NAPA IS-138 Annual Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage: 2018, 9th Annual Survey (2019)
- NAPA QIP-129E Best Practices for RAP and RAS Management (2015)
- NAPA IS-136E, 2nd Ed, *Guidelines for the Use of Reclaimed Asphalt Shingles in Asphalt Pavements* (2019)
- NAPA SR-213E Use of RAP & RAS in High Binder Replacement Asphalt Mixtures: A Synthesis (2016)
- NAPA QIP-126 Energy Conservation in Hot-Mix Asphalt Production (2007)
- NAPA IS-123E Recycling Hot-Mix Asphalt Pavements (2007)
- NAPA SIP-100 Sustainable Asphalt Pavements: A Practical Guide (2019)

THANK YOU!

Q&A?

